AI GLOSSARY

Explainable AI (XAI)

Explainable AI (XAI) refers to methods and techniques that make the decision-making processes of AI systems transparent and understandable to humans. Unlike black box models, explainable AI provides insights into how an AI model reaches its conclusions, allowing users to interpret, trust, and verify the outputs. This is particularly important in high-stakes applications like healthcare, finance, and autonomous systems, where understanding the rationale behind AI decisions is critical. 

All Terms
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z

Continue learning...

View Resources

5 min read
Insuring Against AI Risk: An interview with Mike Osborne
When used by malicious actors or without considerations for transparency and responsibility, AI poses significant risks. Mind Foundry is working with...
7 min read
Machine Learning Types and Their Infrastructure Use Cases
AI and Machine learning is a complex field with numerous models and varied techniques. Understanding these different types and the problems that each...
6 min read
The Business of AI in UK Defence and National Security
While the technical aspects of an AI system are important in Defence and National Security, understanding and addressing AI business considerations...

Stay connected

News, announcements, and blogs about AI in high-stakes applications.